How Is Electricity Generated By Neurons In Our Brain?

Traditional electricity is generated by the motion of free electrons, but neurons generate electric signals using the motion of ions across cell membranes.

Back in high school, as you open your biology textbook, you will almost undoubtedly see a chapter called “Central Nervous System” or “The Human Brain”. The lines read, “Neurons or nerve cells are the primary components of the nervous system. They send and receive information in the form of electrical signals from the sensory organs, facilitating communication with the brain.” The text probably also mentioned something about there being more than 86 billion neurons in every human brain.

However, the book likely didn’t explain how the neurons actually carried out this process of generating electrical signals. Yes, all of us remember the finger-like dendrites, axons and synapses, but the intricacies of the communication process may have eluded our high school minds.

Anatomy & Function of Neurons

Before we get into the details of the constant chatter between body and brain, let’s review the basics of nerve cells. Neurons or nerve cells, along with glia, make up the central nervous system. Glia or glial cells are essentially Robin if neurons are Batman. They don’t directly participate in the exchange of information between neurons, but they do help define synaptic contacts and maintain the signaling abilities of neurons.

Neurons, How Is Electricity Generated By Neurons In Our Brain?, Science ABC, Science ABC

Nothing happens in Gotham city without Batman knowing about it; similarly, nothing happens in our body without our neurons’ permission.

Neurons, on the other hand, are the Batman to the human body’s Gotham. Nothing in the human body happens without the neurons knowing about it. Just like every other cell, neurons have a cell body, often referred to as the soma, which contains the nucleus. Various branches or finger-like structures extend from opposite sides of the soma. An axon is the longer protrusion, while dendrites are the smaller branch-like structures on the other side of soma, as shown in the diagram below.

Vector scientific icon neuron structure. Description of the anatomy of the neuron of the brai(ShadeDesign)s

A neuron consists of three major parts: Dendrites, Cell Body (Soma) and Axon. The transfer of information occurs between the Dendrites and the Axon. (Photo Credit : ShadeDesign/ Shutterstock)

Neurons perform the critical task of carrying information across the entirety of the human body in three steps. First, they must receive signals or information from the sensory organs. Next, they determine whether the data being received should be passed along or not. Finally, they must communicate the subsequent course of action to the target cells or other neurons. Now, onto the important question that started this article… How is this communication achieved?

How is electricity generated in neurons?

The nerve cells transfer information by using both electrical and chemical signals. The electrical signals are used to move information within the nerve cells, whereas chemical signals are used to transfer information between two neighboring neurons.

Dendrites and the soma are responsible for receiving and processing all incoming information. There are receptors present on the dendrites that are designed to pick up signals from other neurons. These signals come in the form of a chemical substance called neurotransmitters. Now, depending on the type of incoming signal, the neuron is either excited and generates electrical impulses or is inhibited from firing. Once the information is processed, the soma sends a response to the next part of the neuron—the axon.

The electric signal sent by the soma to the axon is called an Action Potential, which is a result of the change in membrane potential.

Let’s discuss this in greater detail, shall we?

Membrane Potential and Action Potential

To begin with, let’s take a quick chemistry lesson. Ions are charged particles that have either lost or gained electrons. When a particle loses an electron, it becomes positively charged and is called a cation. When a particle gains an electron, it becomes negatively charged and is called an anion.

Various ions float around in the human body. The difference in the net electrical charge of these ions on the inside and outside of the neuron is called the Membrane Potential. This difference in net electrical charge is due to the grouping of ions on opposite sides of the cell membrane.

Basis of Membrane Potential

The membrane potential is a result of the difference in electrical charge across the cell membrane. The difference is caused by the grouping of ions. (Photo Credit : Public Domain/Wikimedia Commons)

In a rested state, sodium cations (Na+) and chloride anions (Cl-) are more prevalent outside the cell membrane of the neuron. On the inside of the cell membrane, however, potassium cations (K+) and various organic anions (A-) are present in greater numbers.  The cell membrane of the nerve cell is selective in nature, only allowing some substances (ions) to pass through, while blocking the others. When in a rested state, only potassium cations (K+) can pass through the semipermeable membrane.

Ionic basis of resting membrane potential - Illustration

An ion pump helps to maintain the number of ions on both sides of the membrane. The pump pushes out three sodium cations (Na+) for every two potassium cations (K+) that the membrane lets in. (Photo Credit : Alila Medical Media/ Shutterstock)

Thus, when at rest, the inside of the neuron is more negatively charged than the outside. This causes the resting membrane potential of a neuron to be around -70mv. In simpler terms, the inside of the nerve cells is 70 mv less than the outside.


Resting Membrane Potential is affected when a stimulus (a signal from another neuron) is encountered. The stimulus or incoming signal causes the sodium channels of the membrane to open. Since the inside of the nerve cells is approximately -70mv, the positively charged sodium ions (Na+) start rushing in. The membrane potential, as a result, begins to drop below -70 mv, a process called Depolarization.

-55 mv is the threshold value at which the neurons fire an action potential. Thus, when the membrane potential drops below -55 mv, an action potential is passed down the axon. An action potential is of the same kind/size and does not vary with the potential drop amount across the membrane.

The potassium channels take a little longer to open, so both the potassium and sodium cations are now present inside the neuron, causing the membrane potential to eventually drop to zero mv, and then even further!

Nerve impulse action potential in neuron scheme vector illustration - Vector(extender_01)S

Different stages of how an Action Potential is generated. (Photo Credit : extender_01/ Shutterstock)

Repolarization & Hyperpolarization

Once the potassium channels open up, potassium cations (K+) start rushing out to reestablish balance. This process is called repolarization. Also, at around the same time, sodium channels start to close. This causes the membrane potential to return to the resting value of -70 mv.

The sodium channels close completely once the resting potential value is achieved. The potassium channels, however, take longer to close and the membrane potential shoots up to a value above -70 mv. The resting potential drops back down to -70 mv when the potassium channels close.

action potential graph

The graph shows the various stages experienced by a neuron when a stimulus is encountered.


In short, this is how an electrical signal is generated in the neurons. Traditional electricity is generated by the motion of free electrons, but the electricity generated by neurons results from the motion of sodium and potassium ions across the cell membrane. The electrical signals only help to transfer information from the cell body through the axon to the synapse. The transfer of information between two different neurons is facilitated by neurotransmitters, another fascinating topic that deserves an article all to itself:  How do neurotransmitters work?

Help us make this article better
About the Author

Piyush is a mechanical engineer from Mumbai (India) who runs as much as his machines. He’ll always be up to talk about comics, movies, and music. Will meet you annually at the comic-con and daily at the gym.

Science ABC YouTube Videos

  1. Multiverse Theory Explained: Does the Multiverse Really Exist? Truth of Multiple RealitiesMultiverse Theory Explained: Does the Multiverse Really Exist? Truth of Multiple Realities
  2. What Exactly is Spacetime? Explained in Ridiculously Simple WordsWhat Exactly is Spacetime? Explained in Ridiculously Simple Words
  3. What Are The Different Atomic Models? Dalton, Rutherford, Bohr and Heisenberg Models ExplainedWhat Are The Different Atomic Models? Dalton, Rutherford, Bohr and Heisenberg Models Explained
  4. Why Is Blood Drawn From Veins And Not From Arteries?Why Is Blood Drawn From Veins And Not From Arteries?
  5. Emotions and the Brain: What is the limbic system?Emotions and the Brain: What is the limbic system?
  6. Dark Matter Explained: What Exactly is Dark Matter? | A Beginner’s Guide to Dark MatterDark Matter Explained: What Exactly is Dark Matter? | A Beginner’s Guide to Dark Matter
  7. What Exactly is a Tesseract? (Hint: Not a Superhero Stone)What Exactly is a Tesseract? (Hint: Not a Superhero Stone)
  8. Respiratory System: From Inspiration to Expiration Explained in Simple WordsRespiratory System: From Inspiration to Expiration Explained in Simple Words

Tags: ,