Why Does Water Expand When It Freezes?

When water freezes, its molecules get arranged in a crystalline structure, thereby attaining a defined shape. This crystalline structure is less dense, and since there are gaps between individual molecules in the structure, the overall volume increases and water ‘expands’.

From a cursory glance, the phrase “water expands when it freezes” may not make sense, because in liquid form water has no definite shape or form, and therefore seems to occupy more space. Also, when it freezes, water takes on a clearly defined form, which seems quite the opposite of “expansion.”

Let me therefore begin by breaking down the question posed in the title of the article.

Ice cubes

Does ice have a higher volume compared to water? (Photo Credit : George Hodan / Public Domain Pictures)


Recommended Video for you:

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Does water really expand when it freezes?

Yes, water expands when it freezes. Note that the word “expands” in this sentence indicates an increase in volume. So, a technically sound way to put it would be—water’s volume increases when it freezes.

This statement is accurate, and you can test its legitimacy with a simple experiment: if you lower the temperature of water, you will notice that the volume of the water decreases as it becomes more and more “intact.”

You can refer to the following chart to see how much does water expand when it freezes:

Note that the volume of water starts to increase as the temperature falls below 4 degrees Celsius.

Note that the volume of water starts to increase as the temperature falls below 4 degrees Celsius.

Now, let’s talk about why the volume of water increases or why it expands when it freezes and reaches a solid form.

Why does the volume of water increase when it freezes?

This phenomenon has to do with the chemical constitution of water. You see, a molecule of water is made of two hydrogen atoms and one oxygen atom. The arrangement of these atoms is quite unique, which gives water some special properties, such as the high heat capacity of the water, surface tension, adhesion, and cohesion.

Is Water Polar or Nonpolar?

Chemical structure of a water molecule.

This arrangement of a water molecule creates a positively charged side near the hydrogen atoms and a negatively charged side near the oxygen atom.

When two water molecules come close together, the positive side of one molecule clings to the negative side of the other molecule. When this happens on a large scale (i.e. with millions of water molecules), what you get is a unique structure, which accounts for some of the chemical properties of water.

In liquid form, water molecules can move freely, forming and breaking hydrogen bonds in the process, a property that accounts for the irregular shape of water (or any liquid, for that matter). Some water molecules are often “stacked” on top of each other, which explains the higher density of water, as compared to ice.

The arrangement of water molecules in liquid form.

The arrangement of water molecules in liquid form.

However, as the temperature drops and the water cools down, the intermolecular forces increase, the freedom of movement of water molecules decreases, and they become less and less energetic (with decreasing temperature).

When water reaches its freezing point, the movement of its molecules becomes negligible as they take on a more defined shape, arranged in six-sided lattices.

Below is an oversimplified version of the arrangement of water molecules in their crystalline form in ice:

The arrangement of water molecules in solid form.

The arrangement of water molecules in solid form.

This crystalline arrangement of water molecules is less dense, as it prevents molecules from huddling up (as happens in the liquid form) due to stronger intermolecular forces.

This spacing of molecules and keeping them fixed in that position increases the volume of water, which is why it’s said that water expands when it freezes.

This is why ice floats on water

Water expands when it becomes ice, and since the volume is inversely proportional to the density of a substance, ice is less dense than water. For this reason, ice, a substance that appears heavier than its liquid form, floats on water.

If water didn’t expand when it froze, then ice would be denser than water. Think of the impact on the ecosystem of the planet! Ice on the surface of lakes, seas and oceans would sink and these bodies of water would gradually fill from bottom to top. With frozen lakes and oceans, there would be no aquatic life on Earth.

From that perspective, it’s a very good thing that water expands in its solid form!

Suggested Reading

Was this article helpful?
YesNo
Help us make this article better
Scientific discovery can be unexpected and full of chance surprises. Take your own here and learn something new and perhaps surprising!

Follow ScienceABC on Social Media:

About the Author

Ashish is a Science graduate (Bachelor of Science) from Punjabi University (India). He spearheads the content and editorial wing of ScienceABC and manages its official Youtube channel. He’s a Harry Potter fan and tries, in vain, to use spells and charms (Accio! [insert object name]) in real life to get things done. He totally gets why JRR Tolkien would create, from scratch, a language spoken by elves, and tries to bring the same passion in everything he does. A big admirer of Richard Feynman and Nikola Tesla, he obsesses over how thoroughly science dictates every aspect of life… in this universe, at least.

.
Science ABC YouTube Videos

  1. Neutron Stars Explained in Simple Words for LaymenNeutron Stars Explained in Simple Words for Laymen
  2. How Robert J. Oppenheimer became the ‘Father of the Atomic Bomb’How Robert J. Oppenheimer became the ‘Father of the Atomic Bomb’
  3. Higgs Boson (The God Particle) and Higgs Field Explained in Simple WordsHiggs Boson (The God Particle) and Higgs Field Explained in Simple Words
  4. Slowing or Reversing Aging: Can We Live for 180 years?Slowing or Reversing Aging: Can We Live for 180 years?
  5. Detectives Use this Simple Technique to Find Your Fingerprints (Even AFTER You Have Wiped Them Off)!Detectives Use this Simple Technique to Find Your Fingerprints (Even AFTER You Have Wiped Them Off)!
  6. Why is a Circle 360 Degrees, Why Not a Simpler Number, like 100?Why is a Circle 360 Degrees, Why Not a Simpler Number, like 100?
  7. Quantum Mechanics Explained in Ridiculously Simple WordsQuantum Mechanics Explained in Ridiculously Simple Words
  8. Do Fish Get Thirsty and Do They Need to Drink Water?Do Fish Get Thirsty and Do They Need to Drink Water?