The Science of a Tsunami

Back in 2004, Tilly Smith (who was 10 years old then), was relaxing at the Maikhao Beach beach with her parents in Phuket, Thailand when she noticed that “the sea suddenly became frothy, like the top of a beer bottle” and appeared to be “bubbling”. Recalling the clips of tsunami she had seen two weeks earlier in school, she told her parents that a tsunami was imminent. A tsunami actually did hit the beach a few minutes later, but not before Tilly, her parents and nearly a hundred tourists had managed to escape. (Source)

Tilly Smith

Tilly Smith (Photo Credit :

Basic knowledge of certain natural calamities and how they work doesn’t only help you recognize the early warning signs, but also helps you make decisive choices in those critical moments that might save your life – and many others’ as well. In this post, we’re going to dig into one of the deadliest kinds of natural disasters – tsunamis. What are they and how do they do make typically placid waves so fast-moving, huge and destructive?

What is a tsunami?

A small boat being captured by a large tsunami wave

Tsunami: An artist’s impression (Photo Credit : Amanda Carden / Shutterstock)

A tsunami is a series of enormous waves that is caused by a displacement of a large volume of water in a water body, typically the ocean. The word ‘tsunami’ has a Japanese origin, and it means ‘harbor wave’. Tsunamis are sometimes also referred to as tidal waves, but they actually have nothing to do with tidal activity, which causes waves in the seas and oceans due to the gravitational forces of the sun and the moon.

Tsunamis versus regular waves

tsunami waves

Tsunamis are incredibly huge and equally destructive (Photo Credit : Esteban De Armas / Shutterstock)

Tsunami waves are similar to regular waves in certain ways; like the latter, they also have a crest and a trough (the basic characteristics of every wave) and consist of the movement of energy through water, not of moving water itself. The difference is that in the case of regular waves, this energy is provided by wind flowing above the water, which only interacts with the topmost layer of water, causing waves that are small in size and limited in speed. However, in the case of a tsunami, the energy that moves through the water is provided by a number of factors, including earthquakes on the ocean floor (most common), underwater volcanic eruptions or submarine landslides (which rapidly displace large volumes of water, leading to the transfer of energy to the water at a faster rate than it can actually absorb).

Phases of a Tsunami


Generation of tsunami waves from underwater earthquake

Generation of tsunami waves from an underwater earthquake (Image Source: Wikipedia)

Underwater earthquakes are the most common cause of tsunamis; when the tectonic plates of the surface of the planet slip over each other underwater, an enormous amount of energy is released, which travels up to the surface and displaces huge volumes of water. As such a huge volume of water becomes displaced, causing water to rise high above the surface, Earth’s gravity pulls it back down, making the energy ripple outward horizontally, creating multiple waves that move throughout the surface.

Water displacement causes tsunami waves

Water displacement in huge volumes causes tsunami waves


Once tsunami waves are generated, they spread out in all directions, just as a dropped stone sends ripples in all directions, and these waves can travel at over 900 kilometers per hour (more than 550 mph). The wavelength of tsunami waves is also extremely high over deep water. The rate at which a tsunami loses its energy is inversely proportional to the wavelength of the waves.

Rate of loss of energy tsunami waves formula

Since tsunami waves can have huge wavelengths (as much as 500 kilometers or 300 miles), the loss of energy is very small. This is the reason why, over deep waters (say, a depth of around 20,000 feet), tsunami waves can travel at more than 900 kilometers per hour (560 mph – the speed at which jet airplanes fly) without being noticed, because they don’t cause much of a disturbance on the surface over deep water, since there is limited loss of energy.


However, tsunami waves undergo a rapid transformation as they move towards the shallow waters near the shore. Since there is less water, i.e. the water depth is low, according to the aforementioned relation, the rate of energy change is enormous, resulting in an increase of wave amplitude. In other words, since the energy has less water to move through, it becomes compressed, causing the waves to slow down and increase to as high as 100 feet! This phenomenon is called wave shoaling.

Wave shoaling tsunami

Wave shoaling: The waves become increasingly taller as they approach the shore

Due to shoaling, tsunami waves that were imperceptible in deep water can rise to terrifying heights near the shore. The fact that they’re called ‘harbor waves’ indicates that tsunami waves are only perceptible when they approach the shore, making evacuation even more difficult. Furthermore, if the trough of the tsunami wave hits the shore first, it can be even more devastating, as the water will pull back much further than normal and then come back with a powerful, towering wave that breaks inland.

Here’s an interesting Ted-Ed video explaining the science of tsunamis:

A great number of tsunamis have hit various parts of the world since the dawn of civilization and recorded history, and have caused an unimaginable loss of life and property.

Dealing with Tsunamis

Recognizing a tsunami wave

Tsunami waves are gigantic, yes, but they only become apparent when they are very close to the shore. Therefore, you must look for other warning signs. Water receding from the coast and exposing the ocean floor, reefs and fish is a good indicator of an imminent tsunami wave. Survivors of tsunamis all over the world report hearing a ‘sucking’ sound before the waves strike the beach. Some unusual occurrences, like waves creating a loud “roaring” sound similar to that of a jet, as well as excessive frothiness also indicate an unusually high wave.

Things to do during a tsunami

Tsunami hazard zone sign

A Tsunami hazard zone sign (Photo Credit :

The best chance of surviving a tsunami is to move to high ground as soon as possible. Avoiding low-lying areas is key; basically, putting as much as distance as you can between the wave and yourself is a good idea. It’s a myth that the first tsunami wave is the highest, so don’t stop climbing after the first wave hits. Clear the impact area as soon as possible.

Predicting tsunamis

Science cannot predict when a tsunami will occur, but based on historical data and statistical modeling, it can help determine the areas that are prone to these frightening phenomena. Once detected, science can help determine the time of impact, the severity, and the impact area of tsunami waves, which can help to mobilize evacuation operations.

Being one of the deadliest manifestations of the fierce, unforgiving forces of nature, there is very little that can be done to fight or defend against a tsunami. Your best bet is to simply be aware of these events and move out of the way when the deadly waves strike.


  1. Wikipedia
  2. Tsunami Geology
  3. The Evergreen State College, Washington
  4. NOAA (National Oceanic and Atmospheric Administration)
The short URL of the present article is:
Help us make this article better

Ashish is a Science graduate (Bachelor of Science) from Punjabi University (India). He spends a lot of time watching movies, and an awful lot more time discussing them. He likes Harry Potter and the Avengers, and obsesses over how thoroughly Science dictates every aspect of life… in this universe, at least.

Science ABC YouTube Videos

  1. What's the Mysterious & Super Awesome Thing That Occupies 90% of Your Brain?What's the Mysterious & Super Awesome Thing That Occupies 90% of Your Brain?
  2. Why Don't They Have Parachutes For Passengers In Commercial Planes?Why Don't They Have Parachutes For Passengers In Commercial Planes?
  3. Methusaleh: The oldest tree in the world | What's the mystery of trees' immortality?Methusaleh: The oldest tree in the world | What's the mystery of trees' immortality?
  4. 7 Scientifically Inaccurate Things They Show in Movies: Most Common Movie Mistakes and Myths7 Scientifically Inaccurate Things They Show in Movies: Most Common Movie Mistakes and Myths
  5. Why Venus and Mercury have no Moons?Why Venus and Mercury have no Moons?
  6. What Does It Take To Make Vaccines?What Does It Take To Make Vaccines?
  7. Are Zebras Black with White Stripes or White with Black Stripes?Are Zebras Black with White Stripes or White with Black Stripes?
  8. What Are Asteroids And Where Do They Come From?What Are Asteroids And Where Do They Come From?